Simplest Possible Wellorders of $H(\kappa^+)$

Peter Holy

University of Bristol

presenting joint work with Philipp Lücke

January 26, 2014

Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?

Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?

We want to measure complexity in terms of the standard Lévy hierarchy and in terms of the necessary parameters. Note that definable wellorders of $H(\omega_1)$ are closely connected to definable wellorders of the reals (or the Baire space ${}^{\omega}\omega$) and similarly, definable wellorders of $H(\kappa^+)$ are connected to definable wellorders of the generalized Baire space ${}^{\kappa}\kappa$.

Theorem (Gödel, 1920ies)

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Question

How simple a wellordering of $H(\kappa^+)$ can one have definably (by a first order formula in the language of set theory) over $H(\kappa^+)$?

We want to measure complexity in terms of the standard Lévy hierarchy and in terms of the necessary parameters. Note that definable wellorders of $H(\omega_1)$ are closely connected to definable wellorders of the reals (or the Baire space ${}^{\omega}\omega$) and similarly, definable wellorders of $H(\kappa^+)$ are connected to definable wellorders of the generalized Baire space ${}^{\kappa}\kappa$.

Theorem (Gödel, 1920ies)

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Remark: Note that every Σ_n -definable wellordering < is automatically Δ_n -definable, because x < y holds iff $x \neq y$ and $y \not\leq x$.

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Observation (folklore?)

It is inconsistent with ZFC to have a ZF⁻-provably Δ_1 -definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Observation (folklore?)

It is inconsistent with ZFC to have a ZF⁻-provably Δ_1 -definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.

Theorem (Mansfield, 1970)

The existence of a Σ_1 -definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in L[x].

In L, there is a (lightface) Σ_1 -definable wellorder of $H(\kappa^+)$ for every infinite cardinal κ .

Observation (folklore?)

It is inconsistent with ZFC to have a ZF⁻-provably Δ_1 -definable wellorder of $H(\kappa^+)$ whenever κ is an infinite cardinal.

Theorem (Mansfield, 1970)

The existence of a Σ_1 -definable wellorder of $H(\omega_1)$ is equivalent to the statement that there is a real x such that all reals are contained in L[x].

Corollary

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

What if $2^{\kappa} > \kappa^+$?

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Theorem (Asperó - Friedman, 2009)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a lightface definable wellordering (of high complexity) of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

What if $2^{\kappa} > \kappa^+$?

Theorem (Asperó - Holy - Lücke, 2013)

The assumption $2^{\kappa} = \kappa^+$ can be dropped in the second theorem above, replacing preservation of $2^{\kappa} = \kappa^+$ by preservation of the value of 2^{κ} .

$\pmb{\Sigma}_1$ and non-GCH

Theorem (Friedman - Holy, 2011)

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Reminder (Mansfield)

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

If κ is an uncountable cardinal with $\kappa = \kappa^{<\kappa}$ and $2^{\kappa} = \kappa^+$, then there is a cofinality-preserving forcing that introduces a Σ_1 -definable wellordering of $H(\kappa^+)$ and preserves $2^{\kappa} = \kappa^+$.

Reminder (Mansfield)

If there is a Σ_1 -definable wellordering of $H(\omega_1)$, then CH holds.

What about Σ_1 -definable wellorderings of $H(\kappa^+)$ for uncountable κ ?

Question

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, does the existence of a Σ_1 -definable wellordering of $H(\kappa^+)$ imply that $2^{\kappa} = \kappa^+$?

Peter Holy (Bristol)

Simplest Possible Wellorders

We will answer the above question negatively. To motivate our approach, we want to show how one can (quite easily) introduce Σ_2 -definable wellorderings of $H(\kappa^+)$ when κ is uncountable and $\kappa^{<\kappa} = \kappa$.

Given some suitable enumeration $\langle s_{\alpha} | \alpha < \kappa \rangle$ of $\langle \kappa \kappa$, forcing with Solovay's almost disjoint coding forcing makes a given set $A \subseteq \kappa \kappa$ Σ_2^0 -definable over $\kappa \kappa$ - it adds a function $t \colon \kappa \to 2$ such that in the generic extension, for every $x \in \kappa \kappa$,

$$x \in A \iff \exists eta < \kappa \ t(lpha) = 1$$
 for all $eta < lpha < \kappa$ with $s_{lpha} \subseteq x$.

We will answer the above question negatively. To motivate our approach, we want to show how one can (quite easily) introduce Σ_2 -definable wellorderings of $H(\kappa^+)$ when κ is uncountable and $\kappa^{<\kappa} = \kappa$.

Given some suitable enumeration $\langle s_{\alpha} | \alpha < \kappa \rangle$ of $\langle \kappa \kappa$, forcing with Solovay's almost disjoint coding forcing makes a given set $A \subseteq \kappa \kappa$ Σ_2^0 -definable over $\kappa \kappa$ - it adds a function $t \colon \kappa \to 2$ such that in the generic extension, for every $x \in \kappa \kappa$,

$$x \in A \iff \exists \beta < \kappa \ t(\alpha) = 1$$
 for all $\beta < \alpha < \kappa$ with $s_{\alpha} \subseteq x$.

So we could pick any wellordering < of $H(\kappa^+)$, code it by $A \subseteq {}^{\kappa}\kappa$ and make it Δ_1 -definable over $H(\kappa^+)$ of a *P*-generic extension. But forcing with *P* adds new subsets of κ , so < is not a wellordering of $H(\kappa^+)$ anymore.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$ and code it by $A \subseteq {}^{\kappa}\kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus <) Δ_1 -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$ and code it by $A \subseteq {}^{\kappa}\kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus <) Δ_1 -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$ and code it by $A \subseteq {}^{\kappa}\kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus <) Δ_1 -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define

$$x <^* y \iff \exists \dot{x} \forall \dot{y} \left[(\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right],$$

where G is the P-generic filter.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$, then there is a $<\kappa$ -closed, κ^+ -cc partial order $P \subseteq H(\kappa^+)$ that introduces a Σ_2 -definable wellordering of $H(\kappa^+)$.

Proof-Sketch: Pick any wellordering < of $H(\kappa^+)$ and code it by $A \subseteq {}^{\kappa}\kappa$. Apply the almost disjoint coding forcing (denote it by P) to make A (and thus <) Δ_1 -definable over $H(\kappa^+)$. P is κ^+ -cc and $P \subseteq H(\kappa^+)$. This implies that every element x of $H(\kappa^+)$ of the P-generic extension has a name \dot{x} in the $H(\kappa^+)$ of the ground model. This allows us to define

$$x <^* y \iff \exists \dot{x} \forall \dot{y} \left[(\dot{x}^G = x \land \dot{y}^G = y) \rightarrow \dot{x} < \dot{y} \right],$$

where G is the P-generic filter. Using Σ_1 -definability of P and G over the new $H(\kappa^+)$, $<^*$ is a Σ_2 -definable wellordering of the new $H(\kappa^+)$. \Box

If $2^{\kappa} = \kappa^+$, it is possible to pull a small trick and spare one quantifier in the above (by coding all initial segments of <, which in that case have size at most κ and are thus elements of $H(\kappa^+)$). Otherwise however, the above suggests that one cannot hope for a wellordering of the $H(\kappa^+)$ of the ground model to *induce* a Σ_1 -definable wellordering of the $H(\kappa^+)$ of some generic extension, at least not *directly* via names.

By different means, we obtained the following.

Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

Moreover, P introduces a Δ_1 Bernstein subset of κ_{κ} , i.e. a subset X of κ_{κ} such that neither X nor its complement contain a perfect subset of κ_{κ} .

By different means, we obtained the following.

Theorem (Holy - Lücke, 2014)

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

Moreover, P introduces a Δ_1 Bernstein subset of κ_{κ} , i.e. a subset X of κ_{κ} such that neither X nor its complement contain a perfect subset of κ_{κ} .

The basic idea of our solution is to build a forcing P that adds a wellordering of $H(\kappa^+)$ of the P-generic extension (using initial segments (represented in the ground model as sequences of P-names) as conditions) and simultaneously makes this wellordering definable.

A condition p in P_{γ} specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_{δ} -name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) | \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$.

A condition p in P_{γ} specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_{δ} -name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) | \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$. p also specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we in fact require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \vec{A}_p(\delta)$.

A condition p in P_{γ} specifies a sequence \vec{A}_p of length at most γ where for every $\delta < \gamma$, $\vec{A}_p(\delta)$ is a nice P_{δ} -name for a subset of κ and whenever $\bar{\gamma} < \gamma$, $p \upharpoonright \bar{\gamma}$ forces that $\langle \vec{A}_p(\delta) | \delta \leq \bar{\gamma} \rangle$ is a sequence of codes for pairwise distinct elements of $H(\kappa^+)$. p also specifies a_p , a subset of $\lambda \times \kappa$ of size less than κ and for p to be a condition in P_{γ} we in fact require that whenever $(\delta, \alpha) \in a_p$ then $p \upharpoonright \delta$ decides whether $\alpha \in \vec{A}_p(\delta)$.

Moreover we will define a coding forcing C(A) that is capable of coding a subset A of λ by a generically added subset of κ in a Σ_1 -way over $H(\kappa^+)$ with the property that if $B \supseteq A$ then C(A) is a complete subforcing of C(B). The above p also specifies coding components \vec{c}_p of size $< \kappa$ such that \vec{c}_p is a condition in $C(A_p)$ where A_p is \vec{A}_p "restricted" to a_p (which we require to be decided by p hence $A_p \in V$).

Let G be P_{λ} -generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ -sequence of codes for elements of $H(\kappa^+)$ of V[G] that gives rise to an injective enumeration of $H(\kappa^+)$ of V[G], for it can be shown that every element of $H(\kappa^+)$ of V[G] is added by P_{γ} for some $\gamma < \lambda$.

Let G be P_{λ} -generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ -sequence of codes for elements of $H(\kappa^+)$ of V[G] that gives rise to an injective enumeration of $H(\kappa^+)$ of V[G], for it can be shown that every element of $H(\kappa^+)$ of V[G] is added by P_{γ} for some $\gamma < \lambda$. Moreover $\bigcup_{p \in G} a_p = \lambda \times \kappa$, i.e. there is a generic subset of κ that codes \vec{A}^G and we obtain that \vec{A}^G is Σ_1 -definable over $H(\kappa^+)^{V[G]}$.

Let G be P_{λ} -generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ -sequence of codes for elements of $H(\kappa^+)$ of V[G] that gives rise to an injective enumeration of $H(\kappa^+)$ of V[G], for it can be shown that every element of $H(\kappa^+)$ of V[G] is added by P_{γ} for some $\gamma < \lambda$. Moreover $\bigcup_{p \in G} a_p = \lambda \times \kappa$, i.e. there is a generic subset of κ that codes \vec{A}^G and we obtain that \vec{A}^G is Σ_1 -definable over $H(\kappa^+)^{V[G]}$. Since \vec{A}^G is an enumeration of $H(\kappa^+)^{V[G]}$ in order-type λ , we have produced a Σ_1 -definable wellordering of $H(\kappa^+)^{V[G]}$.

Let G be P_{λ} -generic, let $\vec{A} = \bigcup_{p \in G} \vec{A}_p$. Density arguments show that \vec{A}^G is a λ -sequence of codes for elements of $H(\kappa^+)$ of V[G] that gives rise to an injective enumeration of $H(\kappa^+)$ of V[G], for it can be shown that every element of $H(\kappa^+)$ of V[G] is added by P_{γ} for some $\gamma < \lambda$. Moreover $\bigcup_{p \in G} a_p = \lambda \times \kappa$, i.e. there is a generic subset of κ that codes \vec{A}^G and we obtain that \vec{A}^G is Σ_1 -definable over $H(\kappa^+)^{V[G]}$. Since \vec{A}^G is an enumeration of $H(\kappa^+)^{V[G]}$ in order-type λ , we have

produced a Σ_1 -definable wellordering of $H(\kappa^+)^{V[G]}$.

Of course the above doesn't quite make sense, as we have not yet specified the coding forcing C(A).

Club Coding

joint work with David Asperó and Philipp Lücke

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing.

We need a forcing that codes a given $A \subseteq \lambda = 2^{\kappa}$ by a generically added subset of κ . This could be achieved using the Almost Disjoint Coding forcing. However to obtain the desired property that P_{γ_0} is a complete subforcing of P_{γ_1} whenever $\gamma_0 < \gamma_1$, we need our coding forcing C to have the following property:

(*) If $A \subseteq B \subseteq \lambda$, C(A) is a complete subforcing of C(B).

This requirement is not satisfied by the Almost Disjoint Coding forcing.

We thus choose C(A) to be a variation of the Almost Disjoint Coding forcing for A (that could in fact rather be seen as a variation of the Canonical Function Coding by Asperó and Friedman), that combines the classic forcing with iterated club shooting and has the desired property that $A \subseteq B$ implies that C(A) is a complete subforcing of C(B).

Definition (Asperó-Holy-Lücke, 2013)

Given $A \subseteq {}^{\kappa}\kappa$, we let C(A) be the partial order whose conditions are tuples

$$p = (s_p, t_p, \langle c_x^p \, | \, x \in a_p \rangle)$$

such that the following hold for some successor ordinal $\gamma_p < \kappa$.

s_p: γ_p → ^{<κ}κ, t_p: γ_p → 2 and a_p ∈ [A]^{<κ}.
If x ∈ a_p, then c^p_x is a closed subset of γ_p and s_p(α) ⊆ x → t_p(α) = 1 for all α ∈ c^p_x.

We let $q \leq p$ if $s_p = s_q \upharpoonright \gamma_p$, $t_p = t_q \upharpoonright \gamma_p$, $a_p \subseteq a_q$ and $c_x^p = c_x^q \cap \gamma_p$ for every $x \in a_p$.

Lemma (Asperó-Holy-Lücke, 2013)

Assume G is C(A)-generic, $s = \bigcup_{p \in G} s_p$ and $t = \bigcup_{p \in G} t_p$. Then $s: \kappa \to {}^{<\kappa}\kappa, t: \kappa \to 2$ and A is equal to the set of all $x \in ({}^{\kappa}\kappa)^{V[G]}$ such that

$$\forall \alpha \in C \ [s(\alpha) \subseteq x \to t(\alpha) = 1]$$

holds for some club subset C of κ in V[G].

Moreover, C(A) is $<\kappa$ -closed, κ^+ -cc, a subset of $H(\kappa^+)$ and whenever $A \subseteq B \subseteq {}^{\kappa}\kappa$, then C(A) is a complete subforcing of C(B).

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve the above to a Σ_1 -definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -seq. of disjoint stationary subsets of κ on cof(λ).

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve the above to a Σ_1 -definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -seq. of disjoint stationary subsets of κ on $cof(\lambda)$. If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$.

If κ is an uncountable cardinal with $\kappa^{<\kappa} = \kappa$ and 2^{κ} regular then there is a partial order P which is $<\kappa$ -closed and preserves cofinalities $\leq 2^{\kappa}$ and the value of 2^{κ} and introduces a Σ_1 -definable wellordering of $H(\kappa^+)$.

If $\kappa = \lambda^+$ and $\lambda^{<\lambda} = \lambda$, one can improve the above to a Σ_1 -definable wo that only uses a parameter from the ground model, basically by coding, during the above construction, the parameter into the stationarity pattern of a ground model κ -seq. of disjoint stationary subsets of κ on cof(λ). If sufficiently close to **L**, one may choose a canonically $\Sigma_1(\kappa)$ -definable such sequence of stationary subsets of κ and obtain a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$. Similar results are possible for inaccessible κ , but one needs to assume the existence of a κ -sequence of disjoint fat stationary subsets of κ .

Corollary (Holy - Lücke, 2014)

If κ is a regular uncountable **L**-cardinal, then there is a cofinality-preserving forcing extension of **L** with a $\Sigma_1(\kappa)$ -definable wellorder of $H(\kappa^+)$ and $2^{\kappa} > \kappa^+$.

Thank you.